Added cabal and vim dir

This commit is contained in:
hellerve
2015-04-05 17:47:08 +02:00
parent 1e73d5652c
commit ae5a30a4a4
2440 changed files with 40465 additions and 0 deletions

View File

@@ -0,0 +1,467 @@
{-# LINE 1 "templates/GLR_Lib.hs" #-}
{-# LINE 1 "templates/GLR_Lib.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "templates/GLR_Lib.hs" #-}
{-# LINE 1 "GLR_Lib.hs" #-}
{-
GLR_Lib.lhs
Id: GLR_Lib.lhs,v 1.5 2005/08/03 13:42:23 paulcc Exp
-}
{-
Parser driver for the GLR parser.
(c) University of Durham, Ben Medlock 2001
-- initial code, for structure parsing
(c) University of Durham, Paul Callaghan 2004-05
-- extension to semantic rules
-- shifting to chart data structure
-- supporting hidden left recursion
-- many optimisations
-}
{- supplied by Happy
<> module XYZ (
<> lexer -- conditional
-}
-- probable, but might want to parametrise
, doParse
, TreeDecode(..), decode -- only for tree decode
, LabelDecode(..) -- only for label decode
-- standard exports
, Tokens
, GLRResult(..)
, NodeMap
, RootNode
, ForestId
, GSymbol(..)
, Branch(..)
, GSem(..)
)
where
import Data.Char
import qualified Data.Map as Map
import Control.Monad (foldM)
import Data.Maybe (fromJust)
import Data.List (insertBy, nub, maximumBy, partition, find, groupBy, delete)
import GHC.Prim
import GHC.Exts
import System.IO.Unsafe
import Pretty
{- these inserted by Happy -}
fakeimport DATA
{- borrowed from GenericTemplate.hs -}
{-# LINE 89 "templates/GLR_Lib.hs" #-}
happyTrace string expr = unsafePerformIO $ do
hPutStr stderr string
return expr
doParse = glr_parse
----------------------------------------------------------------------------
-- Main data types
-- A forest is a map of `spans' to branches, where a span is a start position,
-- and end position, and a grammatical category for that interval. Branches
-- are lists of conjunctions of symbols which can be matched in that span.
-- Note that tokens are stored as part of the spans.
type Forest = Map.Map ForestId [Branch]
---
-- End result of parsing:
-- - successful parse with rooted forest
-- - else syntax error or premature eof
type NodeMap = [(ForestId, [Branch])]
type RootNode = ForestId
type Tokens = [[(Int, GSymbol)]] -- list of ambiguous lexemes
data GLRResult
= ParseOK RootNode Forest -- forest with root
| ParseError Tokens Forest -- partial forest with bad input
| ParseEOF Forest -- partial forest (missing input)
-----------------------
-- Forest to simplified output
forestResult :: Int -> Forest -> GLRResult
forestResult length f
= case roots of
[] -> ParseEOF f
[r] -> ParseOK r f
rs@(_:_) -> error $ "multiple roots in forest, = " ++ show rs
++ unlines (map show ns_map)
where
ns_map = Map.toList f
roots = [ r | (r@(0,sz,sym),_) <- ns_map
, sz == length
, sym == top_symbol ]
----------------------------------------------------------------------------
glr_parse :: [[UserDefTok]] -> GLRResult
glr_parse toks
= case runST Map.empty [0..] (tp toks) of
(f,Left ts) -> ParseError ts f
-- Error within sentence
(f,Right ss) -> forestResult (length toks) f
-- Either good parse or EOF
where
tp tss = doActions [initTS 0]
$ zipWith (\i ts -> [(i, t) | t <- ts]) [0..]
$ [ [ HappyTok {-j-} t | (j,t) <- zip [0..] ts ] | ts <- tss ]
++ [[HappyEOF]]
---
type PM a = ST Forest [Int] a
type FStack = TStack ForestId
---
-- main function
doActions :: [FStack] -> Tokens -> PM (Either Tokens [FStack])
doActions ss [] -- no more tokens (this is ok)
= return (Right ss) -- return the stacks (may be empty)
doActions stks (tok:toks)
= do
stkss <- sequence [ do
stks' <- reduceAll [] tok_form stks
shiftAll tok_form stks'
| tok_form <- tok ]
let new_stks = merge $ concat stkss
(happyTrace (unlines $ ("Stacks after R*/S pass" ++ show tok)
{-# LINE 181 "templates/GLR_Lib.hs" #-}
: map show new_stks) $ return ())
case new_stks of -- did this token kill stacks?
[] -> case toks of
[] -> return $ Right [] -- ok if no more tokens
_:_ -> return $ Left (tok:toks) -- not ok if some input left
_ -> doActions new_stks toks
reduceAll
:: [GSymbol] -> (Int, GSymbol) -> [FStack] -> PM [(FStack, Int)]
reduceAll _ tok [] = return []
reduceAll cyclic_names itok@(i,tok) (stk:stks)
= do
case action this_state tok of
Accept -> reduceAll [] itok stks
Error -> reduceAll [] itok stks
Shift st rs -> do { ss <- redAll rs ; return $ (stk,st) : ss }
Reduce rs -> redAll rs
where
this_state = top stk
redAll rs
= do
let reds = [ (bf fids,stk',m)
| (m,n,bf) <- rs
, not (n == 0 && m `elem` cyclic_names) -- remove done ones
, (fids,stk') <- pop n stk
]
-- WARNING: incomplete if more than one Empty in a prod(!)
-- WARNING: can avoid by splitting emps/non-emps
(happyTrace (unlines $ ("Packing reds = " ++ show (length reds))
{-# LINE 210 "templates/GLR_Lib.hs" #-}
: map show reds) $ return ())
stks' <- foldM (pack i) stks reds
let new_cyclic = [ m | (m,0,_) <- rs
, (this_state ==# goto this_state m)
, m `notElem` cyclic_names ]
reduceAll (cyclic_names ++ new_cyclic) itok $ merge stks'
shiftAll :: (Int, GSymbol) -> [(FStack, Int)] -> PM [FStack]
shiftAll tok [] = return []
shiftAll (j,tok) stks
= do
let end = j + 1
let key = end `seq` (j,end,tok)
newNode key
let mss = [ (stk, st)
| ss@((_,st):_) <- groupBy (\a b -> snd a == snd b) stks
, stk <- merge $ map fst ss ]
stks' <- sequence [ do { nid <- getID ; return (push key st nid stk) }
| (stk,(I# (st))) <- mss ]
return stks'
pack
:: Int -> [FStack] -> (Branch, FStack, GSymbol) -> PM [FStack]
pack e_i stks (fids,stk,m)
| (st <# 0#)
= return stks
| otherwise
= do
let s_i = endpoint stk
let key = (s_i,e_i,m)
(happyTrace ( unlines
{-# LINE 243 "templates/GLR_Lib.hs" #-}
$ ("Pack at " ++ show key ++ " " ++ show fids)
{-# LINE 243 "templates/GLR_Lib.hs" #-}
: ("**" ++ show stk)
{-# LINE 243 "templates/GLR_Lib.hs" #-}
: map show stks) $ return ())
duplicate <- addBranch key fids
let stack_matches = [ s | s <- stks
, (top s ==# st)
, let (k,s') = case ts_tail s of x:_ -> x
, stk == s'
, k == key
] -- look for first obvious packing site
let appears_in = not $ null stack_matches
(happyTrace ( unlines
{-# LINE 258 "templates/GLR_Lib.hs" #-}
$ ("Stack Matches: " ++ show (length stack_matches))
{-# LINE 258 "templates/GLR_Lib.hs" #-}
: map show stack_matches) $ return ())
(happyTrace ( if not (duplicate && appears_in) then "" else
{-# LINE 261 "templates/GLR_Lib.hs" #-}
unlines
{-# LINE 261 "templates/GLR_Lib.hs" #-}
$ ("DROP:" ++ show ((I# (st)),key) ++ " -- " ++ show stk)
{-# LINE 261 "templates/GLR_Lib.hs" #-}
: "*****"
{-# LINE 261 "templates/GLR_Lib.hs" #-}
: map show stks) $ return ())
if duplicate && appears_in
then return stks -- because already there
else do
nid <- getID
case stack_matches of
[] -> return $ insertStack (push key st nid stk) stks
-- No prior stacks
s:_ -> return $ insertStack (push key st nid stk) (delete s stks)
-- pack into an existing stack
where
st = goto (top stk) m
---
-- record an entry
-- - expected: "i" will contain a token
newNode :: ForestId -> PM ()
newNode i
= chgS $ \f -> ((), Map.insert i [] f)
---
-- add a new branch
-- - due to packing, we check to see if a branch is already there
-- - return True if the branch is already there
addBranch :: ForestId -> Branch -> PM Bool
addBranch i b
= do
f <- useS id
case Map.lookup i f of
Nothing -> chgS $ \f -> (False, Map.insert i [b] f)
Just bs | b `elem` bs -> return True
| otherwise -> chgS $ \f -> (True, Map.insert i (b:bs) f)
---
-- only for use with nodes that exist
getBranches :: ForestId -> PM [Branch]
getBranches i
= useS $ \s -> Map.findWithDefault no_such_node i s
where
no_such_node = error $ "No such node in Forest: " ++ show i
-----------------------------------------------------------------------------
-- Auxiliary functions
(<>) x y = (x,y) -- syntactic sugar
-- Tomita stack
-- - basic idea taken from Peter Ljungloef's Licentiate thesis
data TStack a
= TS { top :: Int# -- state
, ts_id :: Int# -- ID
, stoup :: !(Maybe a) -- temp holding place, for left rec.
, ts_tail :: ![(a,TStack a)] -- [(element on arc , child)]
}
instance Show a => Show (TStack a) where
show ts
= "St" ++ show ((I# (top ts)))
++ "\n" ++ render (spp $ ts_tail ts)
where
spp ss = nest 2
$ vcat [ vcat [text (show (v,(I# (top s)))), spp (ts_tail s)]
| (v,s) <- ss ]
---
-- id uniquely identifies a stack
instance Eq (TStack a) where
s1 == s2 = (ts_id s1 ==# ts_id s2)
--instance Ord (TStack a) where
-- s1 `compare` s2 = (I# (ts_id s1)) `compare` (I# (ts_id s2))
---
-- Nothing special done for insertion
-- - NB merging done at strategic points
insertStack :: TStack a -> [TStack a] -> [TStack a]
insertStack = (:)
---
initTS :: Int -> TStack a
initTS (I# (id)) = TS 0# id Nothing []
---
push :: ForestId -> Int# -> Int -> TStack ForestId -> TStack ForestId
push x@(s_i,e_i,m) st (I# (id)) stk
= TS st id stoup [(x,stk)]
where
-- only fill stoup for cyclic states that don't consume input
stoup | s_i == e_i && (st ==# goto st m) = Just x
| otherwise = Nothing
---
pop :: Int -> TStack a -> [([a],TStack a)]
pop 0 ts = [([],ts)]
pop 1 st@TS{stoup=Just x}
= pop 1 st{stoup=Nothing} ++ [ ([x],st) ]
pop n ts = [ (xs ++ [x] , stk')
| (x,stk) <- ts_tail ts
, (xs,stk') <- pop (n-1) stk ]
---
popF :: TStack a -> TStack a
popF ts = case ts_tail ts of (_,c):_ -> c
---
endpoint stk
= case ts_tail stk of
[] -> 0
((_,e_i,_),_):_ -> e_i
---
merge :: (Eq a, Show a) => [TStack a] -> [TStack a]
merge stks
= [ TS st id ss (nub ch)
| (I# (st)) <- nub (map (\s -> (I# (top s))) stks)
, let ch = concat [ x | TS st2 _ _ x <- stks, (st ==# st2) ]
ss = mkss [ s | TS st2 _ s _ <- stks, (st ==# st2) ]
(I# (id)) = head [ (I# (i)) | TS st2 i _ _ <- stks, (st ==# st2) ]
-- reuse of id is ok, since merge discards old stacks
]
where
mkss s = case nub [ x | Just x <- s ] of
[] -> Nothing
[x] -> Just x
xs -> error $ unlines $ ("Stoup merge: " ++ show xs)
: map show stks
----------------------------------------------------------------------------
-- Monad
-- TODO (pcc): combine the s/i, or use the modern libraries - might be faster?
-- but some other things are much, much, much more expensive!
data ST s i a = MkST (s -> i -> (a,s,i))
instance Functor (ST s i) where
fmap f (MkST sf)
= MkST $ \s i -> case sf s i of (a,s',i') -> (f a,s',i')
instance Monad (ST s i) where
return a = MkST $ \s i -> (a,s,i)
MkST sf >>= k
= MkST $ \s i ->
case sf s i of
(a,s',i') -> let (MkST sf') = k a in sf' s' i'
runST :: s -> i -> ST s i a -> (s,a)
runST s i (MkST sf) = case sf s i of
(a,s,_) -> (s,a)
chgS :: (s -> (a,s)) -> ST s i a
chgS sf = MkST $ \s i -> let (a,s') = sf s in (a,s',i)
useS :: (s -> b) -> ST s i b
useS fn = MkST $ \s i -> (fn s,s,i)
getID :: ST s [Int] Int
getID = MkST $ \s (i:is) -> (i,s,is)