Files
dotfiles/cabal/share/x86_64-osx-ghc-7.8.4/zepto-0.6.1/stdlib/comlist.scm
2015-04-05 17:47:08 +02:00

317 lines
9.3 KiB
Scheme

;;"comlist.scm" Implementation of COMMON LISP list functions for Scheme
; Copyright (C) 1991, 1993, 1995, 2001, 2003 Aubrey Jaffer.
; Copyright (C) 2000 Colin Walters
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
;;; Some of these functions may be already defined in your Scheme.
;;; Comment out those definitions for functions which are already defined.
;;;; LIST FUNCTIONS FROM COMMON LISP
(define (cl:assoc-adjoin pair lst)
(if (assoc (car pair) lst)
lst
(cons pair lst)))
;; with precedence to first lst
(define cl:assoc-union
(letrec ((onion (lambda (lst1 lst2)
(if (null? lst1)
lst2
(onion (cdr lst1) (cl:assoc-adjoin (car lst1) lst2))))))
(lambda (lst1 lst2)
(cond ((null? lst1) lst2)
((null? lst2) lst1)
(else (onion (reverse lst2) lst1))))))
;;; Some tail-recursive optimizations made by
;;; Colin Walters <walters@cis.ohio-state.edu>
;;; AGJ restored order July 2001.
;;;@ From: hugh@ear.mit.edu (Hugh Secker-Walker)
(define (cl:make-list k . init)
(set! init (if (pair? init) (car init)))
(do ((k (+ -1 k) (+ -1 k))
(result '() (cons init result)))
((negative? k) result)))
;@
(define (cl:copy-list lst) (append lst '()))
;@
(define (cl:adjoin obj lst) (if (member obj lst) lst (cons obj lst)))
;@
(define cl:union
(letrec ((onion
(lambda (lst1 lst2)
(if (null? lst1)
lst2
(onion (cdr lst1) (cl:adjoin (car lst1) lst2))))))
(lambda (lst1 lst2)
(cond ((null? lst1) lst2)
((null? lst2) lst1)
((null? (cdr lst1)) (cl:adjoin (car lst1) lst2))
((null? (cdr lst2)) (cl:adjoin (car lst2) lst1))
((< (length lst2) (length lst1)) (onion (reverse lst2) lst1))
(else (onion (reverse lst1) lst2))))))
;@
(define (cl:intersection lst1 lst2)
(if (null? lst2)
lst2
(let build-intersection ((lst1 lst1)
(result '()))
(cond ((null? lst1)
(if (null? result)
'()
(reverse result)))
((member (car lst1) lst2)
(build-intersection (cdr lst1) (cons (car lst1) result)))
(else (build-intersection (cdr lst1) result))))))
;@
(define (cl:set-difference lst1 lst2)
(if (null? lst2)
lst1
(let build-difference ((lst1 lst1)
(result '()))
(cond ((null? lst1) (reverse result))
((member (car lst1) lst2) (build-difference (cdr lst1) result))
(else (build-difference (cdr lst1) (cons (car lst1) result)))))))
;@
(define (cl:subset? lst1 lst2)
(or (eq? lst1 lst2)
(let loop ((lst1 lst1))
(or (null? lst1)
(and (member (car lst1) lst2)
(loop (cdr lst1)))))))
;@
(define (cl:position obj lst)
(define pos (lambda (n lst)
(cond ((null? lst) #f)
((equal? obj (car lst)) n)
(else (pos (+ 1 n) (cdr lst))))))
(pos 0 lst))
;@
(define (cl:reduce-init pred? init lst)
(if (null? lst)
init
(cl:reduce-init pred? (pred? init (car lst)) (cdr lst))))
;@
(define (cl:reduce pred? lst)
(cond ((null? lst) lst)
((null? (cdr lst)) (car lst))
(else (cl:reduce-init pred? (car lst) (cdr lst)))))
;@
(define (cl:some pred lst . rest)
(cond ((null? rest)
(let mapf ((lst lst))
(and (not (null? lst))
(or (pred (car lst)) (mapf (cdr lst))))))
(else (let mapf ((lst lst) (rest rest))
(and (not (null? lst))
(or (apply pred (car lst) (map car rest))
(mapf (cdr lst) (map cdr rest))))))))
;@
(define (cl:every pred lst . rest)
(cond ((null? rest)
(let mapf ((lst lst))
(or (null? lst)
(and (pred (car lst)) (mapf (cdr lst))))))
(else (let mapf ((lst lst) (rest rest))
(or (null? lst)
(and (apply pred (car lst) (map car rest))
(mapf (cdr lst) (map cdr rest))))))))
;@
(define (cl:notany pred . ls) (not (apply cl:some pred ls)))
;@
(define (cl:notevery pred . ls) (not (apply cl:every pred ls)))
;@
(define (cl:list-of?? predicate . bound)
(define (errout) (apply error 'list-of?? predicate bound))
(case (length bound)
((0)
(lambda (obj)
(and (list? obj)
(cl:every predicate obj))))
((1)
(set! bound (car bound))
(cond ((negative? bound)
(set! bound (- bound))
(lambda (obj)
(and (list? obj)
(<= bound (length obj))
(cl:every predicate obj))))
(else
(lambda (obj)
(and (list? obj)
(<= (length obj) bound)
(cl:every predicate obj))))))
((2)
(let ((low (car bound))
(high (cadr bound)))
(cond ((or (negative? low) (negative? high)) (errout))
((< high low)
(set! high (car bound))
(set! low (cadr bound))))
(lambda (obj)
(and (list? obj)
(<= low (length obj) high)
(cl:every predicate obj)))))
(else (errout))))
;@
(define (cl:find-if pred? lst)
(cond ((null? lst) #f)
((pred? (car lst)) (car lst))
(else (cl:find-if pred? (cdr lst)))))
;@
(define (cl:member-if pred? lst)
(cond ((null? lst) #f)
((pred? (car lst)) lst)
(else (cl:member-if pred? (cdr lst)))))
;@
(define (cl:remove obj lst)
(define head (list '*head*))
(let remove ((lst lst)
(tail head))
(cond ((null? lst))
((eqv? obj (car lst)) (remove (cdr lst) tail))
(else
(set-cdr! tail (list (car lst)))
(remove (cdr lst) (cdr tail)))))
(cdr head))
;@
(define (cl:remove-if pred? lst)
(let remove-if ((lst lst)
(result '()))
(cond ((null? lst) (reverse result))
((pred? (car lst)) (remove-if (cdr lst) result))
(else (remove-if (cdr lst) (cons (car lst) result))))))
;@
(define (cl:remove-if-not pred? lst)
(let remove-if-not ((lst lst)
(result '()))
(cond ((null? lst) (reverse result))
((pred? (car lst)) (remove-if-not (cdr lst) (cons (car lst) result)))
(else (remove-if-not (cdr lst) result)))))
;@
(define cl:nconc
(lambda args
(cond ((null? args) '())
((null? (cdr args)) (car args))
((null? (car args)) (apply cl:nconc (cdr args)))
(else
(set-cdr! (last-pair (car args))
(apply cl:nconc (cdr args)))
(car args)))))
;;;@ From: hugh@ear.mit.edu (Hugh Secker-Walker)
(define (cl:nreverse rev-it)
;;; Reverse order of elements of LIST by mutating cdrs.
(cond ((null? rev-it) rev-it)
((not (list? rev-it))
(error "nreverse: Not a list in arg1" rev-it))
(else (do ((reved '() rev-it)
(rev-cdr (cdr rev-it) (cdr rev-cdr))
(rev-it rev-it rev-cdr))
((begin (set-cdr! rev-it reved) (null? rev-cdr)) rev-it)))))
;@
(define (cl:last lst n)
(cl:nthcdr (- (length lst) n) lst))
;@
(define (cl:butlast lst n)
(cl:butnthcdr (- (length lst) n) lst))
;@
(define (cl:nthcdr n lst)
(if (zero? n) lst (cl:nthcdr (+ -1 n) (cdr lst))))
;@
(define (cl:butnthcdr k lst)
(cond ((negative? k) lst) ;(slib:error "negative argument to butnthcdr" k)
; SIMSYNCH FIFO8 uses negative k.
((or (zero? k) (null? lst)) '())
(else (let ((ans (list (car lst))))
(do ((lst (cdr lst) (cdr lst))
(tail ans (cdr tail))
(k (+ -2 k) (+ -1 k)))
((or (negative? k) (null? lst)) ans)
(set-cdr! tail (list (car lst))))))))
;;;; CONDITIONALS
;@
(define (cl:and? . args)
(cond ((null? args) #t)
((car args) (apply cl:and? (cdr args)))
(else #f)))
;@
(define (cl:or? . args)
(cond ((null? args) #f)
((car args) #t)
(else (apply cl:or? (cdr args)))))
;;;@ Checks to see if a list has any duplicate MEMBERs.
(define (cl:has-duplicates? lst)
(cond ((null? lst) #f)
((member (car lst) (cdr lst)) #t)
(else (cl:has-duplicates? (cdr lst)))))
;;;@ remove duplicates of MEMBERs of a list
(define cl:remove-duplicates
(letrec ((rem-dup (lambda (lst nlst)
(cond ((null? lst) (if (null? nlst) nlst (reverse nlst)))
((member (car lst) nlst) (rem-dup (cdr lst) nlst))
(else (rem-dup (cdr lst) (cons (car lst) nlst)))))))
(lambda (lst)
(rem-dup lst '()))))
;@
(define cl:list*
(letrec ((list*1 (lambda (obj)
(if (null? (cdr obj))
(car obj)
(cons (car obj) (list*1 (cdr obj)))))))
(lambda (obj1 . obj2)
(if (null? obj2)
obj1
(cons obj1 (list*1 obj2))))))
;@
(define (cl:atom? obj)
(not (pair? obj)))
;@
(define (cl:delete obj lst)
(let delete ((lst lst))
(cond ((null? lst) '())
((equal? obj (car lst)) (delete (cdr lst)))
(else
(set-cdr! lst (delete (cdr lst)))
lst))))
;@
(define (cl:delete-if pred lst)
(let delete-if ((lst lst))
(cond ((null? lst) '())
((pred (car lst)) (delete-if (cdr lst)))
(else
(set-cdr! lst (delete-if (cdr lst)))
lst))))
;@
(define (cl:delete-if-not pred lst)
(let delete-if ((lst lst))
(cond ((null? lst) '())
((not (pred (car lst))) (delete-if (cdr lst)))
(else
(set-cdr! lst (delete-if (cdr lst)))
lst))))