reorganize and add plfa

This commit is contained in:
2020-06-05 09:18:15 +02:00
parent 5bf71e63e7
commit d425272d94
5 changed files with 72 additions and 0 deletions

102
self/Dep.agda Normal file
View File

@@ -0,0 +1,102 @@
module dep where
data Nat : Set where
zero : Nat
suc : Nat Nat
one = suc zero
data L (A : Set) : Set where
[] : L A
_::_ : A L A L A
data Vect (A : Set) : Nat Set where
vnil : Vect A zero
vcons : {n : Nat} A Vect A n Vect A (suc n)
infix 2 _+_
infix 3 _*_
_+_ : Nat Nat Nat
n + zero = n
n + suc m = suc (n + m)
_*_ : Nat -> Nat -> Nat
n * zero = zero
n * suc m = n * m + n
inner : {n : Nat} Vect Nat n Vect Nat n Nat
inner vnil vnil = zero
inner (vcons x xs) (vcons y ys) = x * y + inner xs ys
append : {A : Set} {n m : Nat} Vect A n Vect A m Vect A (m + n)
append vnil ys = ys
append (vcons x xs) ys = vcons x (append xs ys)
data Fin : Nat Set where
fzero : {n : Nat} Fin (suc n)
fsuc : {n : Nat} Fin n Fin (suc n)
_!!_ : {A : Set} {n : Nat} Vect A n Fin n A
vnil !! ()
vcons x xs !! fzero = x
vcons x xs !! fsuc m = xs !! m
data Bool : Set where
true : Bool
false : Bool
if_then_else_ : {A : Set} Bool A A -> A
if true then b1 else b2 = b1
if false then b1 else b2 = b2
_≤_ : Nat Nat Bool
zero n = true
(suc m) zero = false
(suc m) (suc n) = m n
Proposition = Set
data Absurd : Proposition where
data Truth : Proposition where
t : Truth
data _∧_ (A B : Proposition) : Proposition where
and : A B A B
fst : {A B : Proposition} A B A
fst (and a b) = a
snd : {A B : Proposition} A B B
snd (and a b) = b
_×_ = _∧_
data __ (A B : Proposition) : Proposition where
inl : A A B
inr : B A B
case : {A B C : Proposition} A B (A C) (B C) C
case (inl a) f g = f a
case (inr b) f g = g b
lemma : {A : Proposition} A A Truth
lemma a = (and a t)
comm∧ : {A B : Proposition} A B B A
comm∧ (and a b) = (and b a)
True : Bool Proposition
True true = Truth
True false = Absurd
refl≤ : (n : Nat) True (n n)
refl≤ zero = t
refl≤ (suc n) = refl≤ n
data SList : Nat Set where
snil : SList zero
scons : {n : Nat} (m : Nat) True (n m) SList n SList m
slist1 = scons one t (scons zero t snil)

26
self/Distrib.agda Normal file
View File

@@ -0,0 +1,26 @@
module distrib where
data __ (A B : Set) : Set where
inl : A A B
inr : B A B
data _∧_ (A B : Set) : Set where
_and_ : A B A B
and_dist_over_or : {a b c : Set} a (b c) (a b) (a c)
and_dist_over_or (a₁ and (inl x)) = inl (a₁ and x)
and_dist_over_or (a₁ and (inr x)) = inr (a₁ and x)
and_dist_over_or : {a b c : Set} (a b) (a c) a (b c)
and_dist_over_or (inl (x and x)) = x and (inl x)
and_dist_over_or (inr (x and x)) = x and (inr x)
or_dist_over_and : {a b c : Set} (a b) (a c) -> a (b c)
or_dist_over_and ((inl x) and (inl y)) = inl x
or_dist_over_and ((inl x) and (inr y)) = inl x
or_dist_over_and ((inr x) and (inl y)) = inl y
or_dist_over_and ((inr x) and (inr y)) = inr (x and y)
or_dist_over_and : {a b c : Set} a (b c) (a b) (a c)
or_dist_over_and (inl x) = (inl x) and (inl x)
or_dist_over_and (inr (x and y)) = (inr x) and (inr y)

86
self/Peano.agda Normal file
View File

@@ -0,0 +1,86 @@
module peano where
data : Set where
zero :
suc :
_+_ :
zero + zero = zero
zero + n = n
(suc n) + n = suc (n + n)
_*_ :
zero * n = zero
(suc zero) * n = n
(suc n) * n = n + (n * n)
data _even : Set where
ZERO : zero even
STEP : x x even suc (suc x) even
-- alternative:
-- : (x : ) x even suc (suc x) even
proof₁ : suc (suc (suc (suc zero))) even
proof₁ = STEP _ (STEP _ ZERO)
data _∧_ (P : Set) (Q : Set) : Set where
∧-intro : P Q (P Q)
proof₃ : {P Q : Set} (P Q) P
proof₃ (∧-intro p q) = p
_⇔_ : (P : Set) (Q : Set) Set
a b = (a b) (b a)
∧-comm : {P Q : Set} (P Q) (Q P)
∧-comm (∧-intro p q) = ∧-intro q p
--∧-comm : {P Q : Set} (P Q) (Q P)
--∧-comm = ∧-intro (∧-comm {P} {Q}) (∧-comm {Q} {P})
∧-assoc₁ : {P Q R : Set} ((P Q) R) (P (Q R))
∧-assoc₁ (∧-intro (∧-intro p q) r) = ∧-intro p (∧-intro q r)
∧-assoc₂ : {P Q R : Set} (P (Q R)) ((P Q) R)
∧-assoc₂ (∧-intro p (∧-intro q r)) = ∧-intro (∧-intro p q) r
∧-assoc : {P Q R : Set} ((P Q) R) (P (Q R))
∧-assoc = ∧-intro ∧-assoc₁ ∧-assoc₂
data __ (P Q : Set) : Set where
-intro₁ : P P Q
-intro₂ : Q P Q
-elim : {A B C : Set} (A C) (B C) (A B) C
-elim ac bc (-intro₁ a) = ac a
-elim ac bc (-intro₂ b) = bc b
-comm : {P Q : Set} (P Q) (Q P)
-comm (-intro₁ p) = -intro₂ p
-comm (-intro₂ q) = -intro₁ q
-comm : {P Q : Set} (P Q) (Q P)
-comm = ∧-intro -comm -comm
-- this is my first own proof! The associativity of disjunction
-assoc₁ : {P Q R : Set} ((P Q) R) (P (Q R))
-assoc₁ (-intro₁ (-intro₁ p)) = -intro₁ p
-assoc₁ (-intro₁ (-intro₂ q)) = -intro₂ (-intro₁ q)
-assoc₁ (-intro₂ r) = -intro₂ (-intro₂ r)
-assoc₂ : {P Q R : Set} (P (Q R)) ((P Q) R)
-assoc₂ (-intro₁ p) = -intro₁ (-intro₁ p)
-assoc₂ (-intro₂ (-intro₁ q)) = -intro₁ (-intro₂ q)
-assoc₂ (-intro₂ (-intro₂ r)) = -intro₂ r
-assoc : {P Q R : Set} ((P Q) R) (P (Q R))
-assoc = ∧-intro -assoc₁ -assoc₂
--
data : Set where -- nothing
¬ : Set Set
¬ A = A