reorganize and add plfa

This commit is contained in:
2020-06-05 09:18:15 +02:00
parent 5bf71e63e7
commit d425272d94
5 changed files with 72 additions and 0 deletions

86
self/Peano.agda Normal file
View File

@@ -0,0 +1,86 @@
module peano where
data : Set where
zero :
suc :
_+_ :
zero + zero = zero
zero + n = n
(suc n) + n = suc (n + n)
_*_ :
zero * n = zero
(suc zero) * n = n
(suc n) * n = n + (n * n)
data _even : Set where
ZERO : zero even
STEP : x x even suc (suc x) even
-- alternative:
-- : (x : ) x even suc (suc x) even
proof₁ : suc (suc (suc (suc zero))) even
proof₁ = STEP _ (STEP _ ZERO)
data _∧_ (P : Set) (Q : Set) : Set where
∧-intro : P Q (P Q)
proof₃ : {P Q : Set} (P Q) P
proof₃ (∧-intro p q) = p
_⇔_ : (P : Set) (Q : Set) Set
a b = (a b) (b a)
∧-comm : {P Q : Set} (P Q) (Q P)
∧-comm (∧-intro p q) = ∧-intro q p
--∧-comm : {P Q : Set} (P Q) (Q P)
--∧-comm = ∧-intro (∧-comm {P} {Q}) (∧-comm {Q} {P})
∧-assoc₁ : {P Q R : Set} ((P Q) R) (P (Q R))
∧-assoc₁ (∧-intro (∧-intro p q) r) = ∧-intro p (∧-intro q r)
∧-assoc₂ : {P Q R : Set} (P (Q R)) ((P Q) R)
∧-assoc₂ (∧-intro p (∧-intro q r)) = ∧-intro (∧-intro p q) r
∧-assoc : {P Q R : Set} ((P Q) R) (P (Q R))
∧-assoc = ∧-intro ∧-assoc₁ ∧-assoc₂
data __ (P Q : Set) : Set where
-intro₁ : P P Q
-intro₂ : Q P Q
-elim : {A B C : Set} (A C) (B C) (A B) C
-elim ac bc (-intro₁ a) = ac a
-elim ac bc (-intro₂ b) = bc b
-comm : {P Q : Set} (P Q) (Q P)
-comm (-intro₁ p) = -intro₂ p
-comm (-intro₂ q) = -intro₁ q
-comm : {P Q : Set} (P Q) (Q P)
-comm = ∧-intro -comm -comm
-- this is my first own proof! The associativity of disjunction
-assoc₁ : {P Q R : Set} ((P Q) R) (P (Q R))
-assoc₁ (-intro₁ (-intro₁ p)) = -intro₁ p
-assoc₁ (-intro₁ (-intro₂ q)) = -intro₂ (-intro₁ q)
-assoc₁ (-intro₂ r) = -intro₂ (-intro₂ r)
-assoc₂ : {P Q R : Set} (P (Q R)) ((P Q) R)
-assoc₂ (-intro₁ p) = -intro₁ (-intro₁ p)
-assoc₂ (-intro₂ (-intro₁ q)) = -intro₁ (-intro₂ q)
-assoc₂ (-intro₂ (-intro₂ r)) = -intro₂ r
-assoc : {P Q R : Set} ((P Q) R) (P (Q R))
-assoc = ∧-intro -assoc₁ -assoc₂
--
data : Set where -- nothing
¬ : Set Set
¬ A = A